๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐“ก๐“ธ๐“ธ๐“ถ5: ๐’ฆ๐‘œ๐“‡๐‘’๐’ถ ๐’ฐ๐“ƒ๐’พ๐“‹/์žฌ๋ฌด๊ด€๋ฆฌ Financial Management(BUSS207)

[์žฌ๋ฌด๊ด€๋ฆฌ] 1. Time value of money

0. Overview

  1. Future Value of Single Cash Flow (Lump Sum, ํ˜„์žฌ n์›์˜ ๋ฏธ๋ž˜ ๊ฐ€์น˜)
  2. Present Value of a Single Cash Flow  (๋ฏธ๋ž˜ n์›์˜ ํ˜„์žฌ ๊ฐ€์น˜)
  3. Future and Present Value of Annuities (์—ฐ๊ธˆ, ๋งค ๋…„ ๊ฐ™์€ ๊ธˆ์•ก ์ ๊ธˆ ์‹œ ๋ชจ์ด๋Š” ๋ˆ)
  4. Future and Present Value of Uneven Cash Flows (๋งค ๋…„ ๋‹ค๋ฅธ ๊ธˆ์•ก ์ ๊ธˆ)
  5. Non-annual Interenst Compounding (๋น„์—ฐ๊ฐ„ ์ด์ž๋ณต๋ฆฌ, ์—ฐ๋ณ„ ๋ง๊ณ  ๋” ์ž์ฃผ ์ ๊ธˆ)

์šฉ์–ด ์ •๋ฆฌ

  • PV = Present Value (๋ˆ์˜ ํ˜„์žฌ ๊ฐ€์น˜)
  • FVn = Future Value (์ง€๊ธˆ์œผ๋กœ๋ถ€ํ„ฐ n๋…„ ๋’ค์˜ ๋ˆ์˜ ๊ฐ€์น˜)
  • i = ์—ฐ๊ฐ„ ์ด์ž์œจ
  • n = ๋…„๋„ ์ˆ˜, number of period 
  • PMT = Periodic annuity cash flow (n์› ๋นŒ๋ ธ์„ ์‹œ ๊ฐš๊ธฐ ์œ„ํ•ด ํ•œ๋‹ฌ์— ์–ผ๋งˆ์”ฉ ๋‚ด์•ผ ํ•˜๋Š”๊ฐ€)
  • Time line
  • Type 
    • 0 : payment๊ฐ€ period ๋ง์— ์ผ์–ด๋‚  ๊ฒฝ์šฐ
    • 1 : payment๊ฐ€ period ์‹œ์ž‘ํ•  ๋•Œ ์ผ์–ด๋‚  ๊ฒฝ์šฐ

 

1. Future Value of a Single CF

์ง€๊ธˆ์˜ ๋ˆ ์–ผ๋งˆ๊ฐ€ ๋ฏธ๋ž˜์—๋Š” ์–ผ๋งˆ์˜ ๊ฐ€์น˜๋ฅผ ๊ฐ€์งˆ ์ง€ ์•Œ์•„๋ณด์ž
FVn = PV * (1+i) ^ n = PV*(FVIF_i,n) 

 

์˜ˆ์‹œ๋ฅผ ํ’€์–ด๋ณด์ž

  • initial = $100, 3 years after, i = 10% (i = compounding rate; ํ• ์ฆ)

 

0 -> 1 : 100*1.1 = 110

1 -> 2 : (100*1.1) * 1.1 = 100 * (1.1)^2 = 121

2 -> 3 : 100 * (1.1)^3 = 133.10

 

์ฆ‰ 100๋‹ฌ๋Ÿฌ๊ฐ€ 3๋…„๋’ค์—๋Š” 133.1 ๋‹ฌ๋Ÿฌ๊ฐ€ ๋จ

 

ํ’€ ๋•Œ๋Š”

  1. ์—ด์‹ฌํžˆ ๊ณ„์‚ฐ๊ธฐ ๋‘๋“œ๋ฆฌ๊ฑฐ๋‚˜
  2. FVIF ๊ฐ’์„ ํ‘œ์—์„œ ์ฐพ์•„์„œ ๊ตฌํ•˜๊ฑฐ๋‚˜
  3. ์—‘์…€์„ ์“ฐ๋˜๊ฐ€
  4. financial ๊ณ„์‚ฐ๊ธฐ๋ฅผ ์“ฐ๋ฉด ๋จ

์—‘์…€์„ ์“ธ ๋•Œ๋Š”

 

FV = (rate, nper, pmt, pv, type)

  • rate = i
  • nper = payment ์ˆ˜, n
  • PMT = 0
  • PV = present value
  • Type = 0 or 1

 

2. Present Value of a Single CF

๋ฏธ๋ž˜์— ํ•„์š”ํ•œ ๋ˆ์ด ์ง€๊ธˆ์œผ๋กœ ๋”ฐ์ง€๋ฉด ์–ผ๋งˆ์ผ๊นŒ?

์˜ˆ์‹œ๋ฅผ ํ’€์–ด๋ณด์ž

  • FV = $100, 3 years, i = 10% ์ผ ๋•Œ PV

PV = 100 * (1/1.1) ^3 = 75.31

์ฆ‰, ๋ฏธ๋ž˜์— 100๋‹ฌ๋Ÿฌ๋ฅผ ๊ฐ€์ง€๋ ค๋ฉด, ์ง€๊ธˆ 75.31๋‹ฌ๋Ÿฌ๊ฐ€ ์žˆ์–ด์•ผ ํ•˜๋Š” ๊ฑฐ์ž„

 

 

3. Annuities

a series of equal periodic cash flows : ๊ฐ™์€ ๊ธฐ๊ฐ„ ๊ฐ„๊ฒฉ์œผ๋กœ ๊ณ„์† ๋ˆ ๋„ฃ๊ธฐ

 

PV : n๋…„ ๋™์•ˆ N์›์”ฉ ๋ชจ์€ ๋ˆ์˜ ํ˜„์žฌ ๊ฐ€์น˜๋Š” ์–ผ๋งˆ์ผ๊นŒ?!

FV : ์ง€๊ธˆ ๊ฐ€์น˜๋กœ N์›์”ฉ ๋ชจ์œผ๋ฉด ๋ฏธ๋ž˜์—” ์–ผ๋งˆ๊ฐ€ ๋ ๊นŒ?!

 

  1. Ordinary (type 0)  
    • PV : period ๋ง์— payment. ๋งค ๋…„ ๋ง ๋ˆ ๋ชจ์Œ
    • FV : last payment ์ด์ž ์•ˆ ๋ถ™๊ณ  ๋๋‚จ
  2. Annuity - Due (type 1)
    • PV : period ์ดˆ์— payment. ๋งค ๋…„ ์ดˆ ๋ˆ ๋ชจ์Œ
    • FV : last payment ์ด์ž ๋ถ™๊ณ  ๋๋‚จ

FV of Ordinary Annuity

  • 3 year
  • ordinary annuity
  • 100$์˜ PV
  • i = 10%

FVAn = 100 (๋งˆ์ง€๋ง‰ ์ž…๊ธˆ) + 110 (2๋…„์ฐจ ์ž…๊ธˆ) + 121(1๋…„์ฐจ ์ž…๊ธˆ) = 331

 

์ฆ‰, 100๋‹ฌ๋Ÿฌ์”ฉ 3๋…„ ๋ชจ์œผ๋ฉด 3๋…„ ๋’ค์— 331๋‹ฌ๋Ÿฌ๊ฐ€ ๋จ

 

excel๋กœ๋Š” FV(rate, nper, pmt, pv, type) = FV(0.1, 3, -100, 0, 0)

 

FV of Annuity Due

์ด ๊ฒฝ์šฐ์—” ์ด์ž๊ฐ€ ๋งˆ์ง€๋ง‰์— ํ•œ ๋ฒˆ ๋” ๋ถ™๊ธฐ ๋•Œ๋ฌธ์—, ์ „์ฒด์— ์ด์ž์œจ์„ ํ•œ ๋ฒˆ ๋” ๊ณฑํ•ด์ค˜์•ผ ํ•จ!

 

FVAn(due) = 110 + 121 + 133.1 = 364.1

 

 

PV of Ordinary Annuity 

  • 3 year
  • ordinary annuity
  • 100$์˜ FV(PMT)
  • i = 10%

PVA3 = 90.91 + 82.64 + 75.13 = 248.68

or PMT*(PVIFA_i,n) = 100*PVIFA

 

์ฆ‰, ๋งค ๋‹ฌ 100๋‹ฌ๋Ÿฌ์”ฉ 3๋…„์„ ๋ชจ์€ ๋ˆ์˜ ํ˜„์žฌ ๊ฐ€์น˜๋Š” 248๋‹ฌ๋Ÿฌ์ธ ๊ฒƒ

excel๋กœ๋Š” PV(rate, nper, pmt, fv, type) = PV(0.1, 3, -100, 0, 0)

 

PV of Annuity Due

FV์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ด์ž๋ฅผ ํ•œ ๋ฒˆ ๋” ๊ณฑํ•ด์ค˜์•ผ ํ•จ (1+i)

excel๋กœ๋Š” PV(rate, nper, pmt, fv, type) = PV(0.1, 3, -100, 0, 1)

 

 

4. Uneven Cash Flows

๋งค ์‹œ๊ธฐ๋งˆ๋‹ค ๋„ฃ๋Š” ๊ธˆ์•ก์ด ๋‹ค๋ฅธ ๊ฒฝ์šฐ์ž„. ๊ณต์‹ํ™”๊ฐ€ ์–ด๋ ค์›Œ์„œ ์ผ์ผํžˆ ๊ณ„์‚ฐํ•จ

 

  • 1 year : 100
  • 2 year : 300
  • 3 year : 300
  • 4 year : -50

--> 100*(FVIF(10%, 4)) + 300*....

 

๋ฌผ๋ก  ์—‘์…€์„ ์“ฐ๋ฉด ๊ณ„์‚ฐ ํŽธํ•˜๊ฒŒ ํ•ด ์คŒ !

 

NPV(rate, value1, value2, value3, ......) 

 

 

5. Non-Annual Interest Compounding

๋งค ๋…„ ๋„ฃ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํŠน์ • ๊ธฐ๊ฐ„๋งˆ๋‹ค ๋„ฃ์„ ๊ฒฝ์šฐ

 

1. Annual Percentage Rate (APR) 

  • Nominal, or stated, or quoted, rate per year
  • i_nom

Periodic Rate = i_per : ์ฃผ์–ด์ง„ ๊ธฐ๊ฐ„ ๋‹จ์œ„์˜ ์ด์ž์œจ

ex) 8%, quaterly / 8%, daily interest

 

i_per = i_nom / m 

์ฆ‰, 1๋…„ ๋™์•ˆ์˜ ํ‰๊ท  ์ด์ž์œจ์„ 10ํผ์„ผํŠธ๋ผ๊ณ  ์คฌ๊ณ , ์šฐ๋ฆฌ๋Š” ๋งค ๋‹ฌ pay๋ฅผ ํ•œ๋‹ค๋ฉด, period๋ณ„ ์ด์ž์œจ์€ 10/12

 

์ฐธ๊ณ ๋กœ

  • annually : m = 1
  • semi annually : m = 2
  • quarterly : m = 4
  • monthly : m = 12
  • daily compounding : m = 360/365

2. Effective Annual Rate (EAR)

  • the actual annual interest rate earned or paid : ์‹ค์ œ๋กœ ๋‚ด์•ผํ•˜๋Š”/๋ฒŒ์–ด๋“ค์ธ ์—ฐ๊ฐ„ ์ด์ž
  • m = number of compounding periods per year (1๋…„์— ๋ˆ ๋„ฃ์€ ํšŸ์ˆ˜)

 

์˜ˆ๋ฅผ ๋“ค์–ด 10% APR, Semi-Annual ์ด๋ผ๋ฉด 100$๋กœ ์‹œ์ž‘ ์‹œ, ๋ฐ˜ ๋…„ ๋’ค์—๋Š” 5% ์ฆ๊ฐ€ํ•ด 105, 1๋…„ ๋’ค์—๋Š” ๊ทธ๊ฒƒ์˜ 5%๊ฐ€ ์ฆ๊ฐ€ํ•ด 110.25๊ฐ€ ๋œ๋‹ค. ์ด๋Ÿด ๊ฒฝ์šฐ ์ด์ž์œจ์€ 10%๋ผ๊ณ  ํ–ˆ์ง€๋งŒ, ์‹ค์ œ๋กœ ๋Š˜์–ด๋‚œ ๊ธˆ์•ก์€ 100->110.25๋กœ 10.25%๊ฐ€ ๋œ๋‹ค.

 

์ด๋ ‡๊ฒŒ "์‹ค์ œ๋กœ ๋Š˜์–ด๋‚œ ๊ธˆ์•ก" ๋งŒํผ์˜ ๋น„์œจ์„ EAR์ด๋ผ๊ณ  ํ•œ๋‹ค.

 

๋”ฐ๋ผ์„œ EAR์€ ํˆฌ์ž๋ฅผ ํ•  ๋•Œ ๊ฐ๊ฐ์˜ ์„ ํƒ์ง€๊ฐ€ ์–ผ๋งˆ์˜ return์„ ๊ฐ€์ ธ๋‹ค ์ค„์ง€ ๋น„๊ตํ•  ๋•Œ ์œ ์šฉํ•˜๊ฒŒ ์“ธ ์ˆ˜ ์žˆ๋‹ค.

 

๋˜ ๋‹ค๋ฅธ ์˜ˆ๋กœ, BANK A๋Š” 5% APR, monthly 

BANK B๋Š” 5.1% APR, Quarterly๋ผ๊ณ  ํ•ด๋ณด์ž

 

EAR_a = [1+0.05/12]^12 - 1 = 5.12 %

EAR_b = [1+0.051/4]^4 - 1 = 5.20% 

 

๊ฐ€ ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค. ์ฆ‰, BANK B๊ฐ€ ๋” ๋†’์€ ์ด์ž์œจ์„ ๊ฐ–๋Š” ๊ฒƒ!!

 

EAR๋„ nominal rate์™€ ๊ฐ™์„ ์ˆ˜๋„ ์žˆ๋‹ค. ๋‹จ, annual compounding์ผ ๋•Œ๋งŒ! m์ด 1๋ณด๋‹ค ํฌ๋ฉด ๋ฌด์กฐ๊ฑด EAR์ด nominal rate๋ณด๋‹ค ํด ์ˆ˜ ๋ฐ–์— ์—†๋‹ค