๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐“ก๐“ธ๐“ธ๐“ถ5: ๐’ฆ๐‘œ๐“‡๐‘’๐’ถ ๐’ฐ๐“ƒ๐’พ๐“‹

(63)
[๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค] CH2. Introduction to Relation Model(1) superkey : tuple์„ ํŠน์ •์ง€์„ ์ˆ˜ ์žˆ๋Š” attribute ๋˜๋Š” attribute์˜ ์ง‘ํ•ฉ ๋ชจ๋‘ candidate key: primary key๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š” ํ›„๋ณดํ‚ค๋กœ, tuple์„ ํŠน์ •์ง€์„ ์ˆ˜ ์žˆ๋Š” super ํ‚ค ์ค‘ ์ตœ์†Œ์ธ ๊ฒƒ(๋ถˆํ•„์š”ํ•œ ๊ฒƒ ๋บ€ ๊ฒƒ) primary key : candidate key ์ค‘ ํ•˜๋‚˜ foreign key : ๋‹ค๋ฅธ relation์˜ pk๋ฅผ ์ฐธ์กฐํ•œ key
[๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค] CH1. Introduction database systems์„ ์จ์•ผ ํ•˜๋Š” ์ด์œ  1. Data redundancy and inconsistency : ๋ฐ์ดํ„ฐ ์ค‘๋ณต ๋ฐ ๋ถˆ์ผ์น˜๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•ด. ๋ฐ์ดํ„ฐ๊ฐ€ ์—ฌ๋Ÿฌ ํŒŒ์ผ ํ˜•์‹์œผ๋กœ ์ €์žฅ๋˜๋ฏ€๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ํŒŒ์ผ์— ์ •๋ณด๊ฐ€ ์ค‘๋ณต๋จ 2. Difficulty in accessing data : ๋””๋น„ ์•ˆ์“ฐ๋ฉด ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์ด ์–ด๋ ค์›€ 3. Data isolation : ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ? 4. Integrity problems : ์ œ์•ฝ์กฐ๊ฑด์„ ์ถ”๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๋ฐ”๊พธ๊ธฐ ์‰ฝ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด 5. Atomicity of updates : ์ค‘๊ฐ„์— ์˜ค๋ฅ˜๊ฐ€ ๋‚ฌ์„ ๋•Œ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด. (์ผ๋ถ€๋ถ„๋งŒ ์—…๋ฐ์ดํŠธ๋˜์–ด inconsistent state ๋  ์ˆ˜ ์žˆ์Œ) 6. Concurrent access by multiple user..
[์ปดํ“จํ„ฐ๊ตฌ์กฐ] CH4. RISC-V & RISC-V Instruction #1 CISC VS RISC - CISC (Complex Instruction Set Computer) ํ•˜๋‚˜์˜ instruction์ด ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ณต์žกํ•œ ์ž‘์—…์„ ํ•จ ex. move in x86 instruction์˜ ๊ธธ์ด๊ฐ€ ๊ฐ€๋ณ€์  ex. x86(Intel, AMD), Motorola 68k - RISC (Reduced Instruction Set Computer) ๊ฐ instruction์ด ํ•˜๋‚˜์˜ ์ž‘์€(unit) ์ž‘์—…๋งŒ ํ•จ. ex. add, lw, sw, beq instruction์˜ ๊ธธ์ด๊ฐ€ ๊ณ ์ •๋จ Load/Store Architecture ex. RISC-V, ARM, MIPS ์‚ฌ์‹ค ์ด ๊ทธ๋ฆผ์ด ์™œ ์—ฌ๊ธฐ ๊ทธ๋ ค์ ธ ์žˆ๋Š”์ง€ ํ–ˆ๋Š”๋ฐ ์ผ๋‹จ ์žˆ์œผ๋‹ˆ๊นŒ ์„ค๋ช…์„ ํ•ด๋ณด๋„๋ก ํ•˜์ฃ  ์˜ˆ๋ฅผ ๋“ค์–ด COPY๋ผ๋Š” ๋ช…๋ น์„ ์ˆ˜ํ–‰ํ•œ๋‹ค๊ณ  ์น˜์ž. he..
[์ปดํ“จํ„ฐ๊ตฌ์กฐ] CH3. Performance
[์ปดํ“จํ„ฐ๊ตฌ์กฐ] CH2. Instructions and High-level to Machine Code Abstraction ; ์ถ”์ƒํ™” " ๋ณต์žกํ•œ ์ž๋ฃŒ, ๋ชจ๋“ˆ, ์‹œ์Šคํ…œ ๋“ฑ์œผ๋กœ๋ถ€ํ„ฐ ํ•ต์‹ฌ์ ์ธ ๊ฐœ๋… ๋˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ„์ถ”๋ ค ๋‚ด๋Š” ๊ฒƒ " Instruction set architecture (ISA) : ํ•˜๋“œ์›จ์–ด์™€ Low-level ์†Œํ”„ํŠธ์›จ์–ด ๊ฐ„์˜ abstraction interface ํ˜„์‹ค์—์„œ ๋”ฐ์ง€๋ฉด ๊ธฐ๊ณ„๋ฅผ ์šด์ „ํ•˜๋Š” ์‚ฌ์šฉ์ž์—๊ฒŒ ์ œ๊ณตํ•˜๋Š” '์ฐจ'๋ผ๋Š” abstraction layer ๊ฐ™์€.. Abstractions in Computer Programming using APIs : API๋ฅผ ์ด์šฉํ•ด ํ”„๋กœ๊ทธ๋ž˜๋ฐ Operating Sytems : ์šด์˜์ฒด์ œ, APIs๋ฅผ ์ œ๊ณต Instruction Set Architecture (ISA) : Assembly language or Machine language Hardware Imple..
[์ปดํ“จํ„ฐ๊ตฌ์กฐ] CH1. Computer and Technology 1. Classes of Computers ; ์ปดํ“จํ„ฐ์˜ ๋ถ„๋ฅ˜ 1) Personal computers(PC) : ๊ฐœ์ธ์šฉ ํ”ผ์”จ ์ผ๋ฐ˜์ ์ธ ๋ชฉ์  ๋ฐ์Šคํฌํƒ‘, ๋…ธํŠธ๋ถ, ๋žฉํƒ‘, ๋„ท๋ถ(?) 2) Servers ์—ฌ๋Ÿฌ ์œ ์ €๋“ค๋กœ ๋ถ€ํ„ฐ ๋” ํฐ ํ”„๋กœ๊ทธ๋žจ์„ ์‹คํ–‰์‹œํ‚ด ๋Œ€๊ฐœ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•ด ์ ‘๊ทผ ํฐ ์šฉ๋Ÿ‰, ์ข‹์€ ์„ฑ๋Šฅ๊ณผ ์•ˆ์ •์„ฑ ์ž‘์€ ์„œ๋ฒ„๋ถ€ํ„ฐ ๋นŒ๋”ฉ ํฌ๊ธฐ๊นŒ์ง€ ๋‹ค์–‘ํ•จ High-end : ์Šˆํผ ์ปดํ“จํ„ฐ๋‚˜ ๋ฐ์ดํ„ฐ ์„ผํ„ฐ์šฉ, ํ…Œ๋ผ๋ฐ”์ดํŠธ์˜ ๋ฉ”๋ชจ๋ฆฌ์™€ ํŽ˜ํƒ€๋ฐ”์ดํŠธ์˜ ์ €์žฅ์šฉ๋Ÿ‰์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ˆ˜๋ฐฑ ์ˆ˜์ฒœ๊ฐœ์˜ ํ”„๋กœ์„ธ์„œ๋“ค๋กœ ๊ตฌ์„ฑ๋จ Low-end : ์ž‘์€ ํšŒ์‚ฌ๋‚˜ ์›น ์„œ๋น™์šฉ 3) Embedded computers -> ํŠน๋ณ„ํ•œ ๋ชฉ์ ์œผ๋กœ ๋งŒ๋“ค์–ด์ง€๋Š”! ์–ด๋–ค ํŠน์ •ํ•œ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹คํ–‰์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ปดํ“จํ„ฐ๋ž„๊นŒ ex) GPS navigator, robots, car.... 2. ..
[์ธ๊ณต์ง€๋Šฅ] 17. Making Sequential Decisions 1. Markov Decision Process 1) Episodic Decisions - nondeterministic, partially observableํ•œ ์ƒํ™ฉ์—์„œ๋Š” ๋‹ค์Œ state๋ฅผ ํ™•์‹ ํ•  ์ˆ˜ ์—†๋‹ค. ๋”ฐ๋ผ์„œ observations e๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ outcome์€ outcome s'๊ฐ€ ๋งž์„ ๋•Œ์˜ ํ™•๋ฅ ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. P(Result(a) = s' | a, e) - Utility function U(s)๋Š” ๊ฐ state์˜ ์ข‹์€ ์ •๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํ•˜๋‚˜์˜ ์ˆซ์ž์ด๋‹ค. ์ฃผ์–ด์ง„ evidence์—์„œ ์–ด๋–ค action์„ ์ทจํ–ˆ์„ ๋•Œ์˜ expected utility ๊ฐ’์€, ๊ทธ action์„ ์ทจํ–ˆ์„ ๋•Œ ๋‚˜์˜ค๋Š” outcome์˜ average utility value๊ฐ’์ด๋‹ค. EU(a | e) = ∑(s') P(Res..
[์ธ๊ณต์ง€๋Šฅ] 16. Hidden Markov Models (HMM) 1. Definition of Hidden Markov Model : ์‹œ๊ฐ„์˜ ๊ฐœ๋…์ด ํฌํ•จ๋œ ํ™•๋ฅ  ๋ชจ๋ธ - single discrete random variable๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” probabilistic model. - state variable Xt ๋Š” ์ •์ˆ˜ 1, ... , S๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ, S๋Š” ๊ฐ€๋Šฅํ•œ states์˜ ์ˆ˜์ด๋‹ค. - transition model P(Xt|Xt-1) ์€ S*S์˜ matrix T์ด๋‹ค. (T_ij = P(Xt = j | X_t-1 = i) - evidence variable Et๋Š” ๊ฐ state์—์„œ specifyํ•˜๊ณ , ๊ฐ state i์—์„œ P(et | Xt = i) ๋ฅผ ํ†ตํ•ด state๊ฐ€ et๋ฅผ ์•ผ๊ธฐํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด value๋Š” ํŽธ์˜์ƒ S*S์˜ diagona..
[์ธ๊ณต์ง€๋Šฅ] 15. Probabilistic Reasoning over Time (PRoT) 1. Introduction - ์„ธ์ƒ์„ ๋ช‡ ๊ฐœ์˜ observable ํ•˜๊ฑฐ๋‚˜ ๊ทธ๋ ‡์ง€ ์•Š์€ random variables์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ์–ด๋–ค snapshot ๋˜๋Š” time slices์˜ ์ง‘ํ•ฉ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜์ž. - Xt : state variables at time t , ์‹œ๊ฐ„์ด t์ผ ๋•Œ์˜ state variable๋“ค์˜ ์ง‘ํ•ฉ. ๊ด€์ธกํ•  ์ˆ˜ ์—†๋Š”, ๊ทธ ๊ฐ’์„ ์•Œ ์ˆ˜ ์—†๋Š” variable์ด๋‹ค. - Et : evidence variables, ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š”, ์•Œ ์ˆ˜ ์žˆ๋Š” variable - transition model : state์ด ์–ด๋–ป๊ฒŒ ๋ณ€ํ•˜๋Š”์ง€ ์ •์˜ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด t-1 ์ผ ๋•Œ state์ด X์ผ ๋•Œ, ๋‹ค์Œ state์ด X ์ผ ํ™•๋ฅ  - sensor model : evidence variable์ด ๊ฐ’์ด ์–ด๋–ป๊ฒŒ ..
[์ธ๊ณต์ง€๋Šฅ] 14. Bayesian Networks 1. Definition of Bayesian Networks 1) Bayesian networks (= belief networks, Bayesian belief networks, graphical models) - Directed graph์ž„ - Nodes (= Random variable)์™€ Links ๋กœ ๊ตฌ์„ฑ๋จ - node X๋กœ๋ถ€ํ„ฐ node Y๋กœ์˜ links๋กœ ์ด๋ฃจ์–ด์ง„ directed acyclic graph(DAG) - X๋Š” causes, Y๋Š” effects - Conditional probability distribution P(Xi | Parents(Xi) ) : Xi ์˜ ๋ถ€๋ชจ ๋…ธ๋“œ๋“ค์ด ๋ฐœ์ƒํ•  ๋•Œ Xi๊ฐ€ ๋ฐœ์ƒํ•  ํ™•๋ฅ  ์ฆ‰ ~๊ฐ€ ๋ฐœ์ƒํ•  ๋•Œ์˜ ํ™•๋ฅ ์„ ํŠธ๋ฆฌ์ฒ˜๋Ÿผ..? ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋ƒ„ 2) Condit..