๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐“ก๐“ธ๐“ธ๐“ถ5: ๐’ฆ๐‘œ๐“‡๐‘’๐’ถ ๐’ฐ๐“ƒ๐’พ๐“‹/Discrete mathematics

(5)
[์ด์‚ฐ์ˆ˜ํ•™] Chapter 1. Logic and proofs 1. Propositions : ๋ช…์ œ - ๋งŒ์•ฝ p, q๊ฐ€ ๋ช…์ œ๋ผ๋ฉด, connective๋ฅผ ์ด์šฉํ•ด ์ƒˆ๋กœ์šด compound proposition์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. (conjunction AND, inclusive disjunction OR, exclusive disjunction OR(XOR), negation, implication, double implication) 2. Conditional propositions(์กฐ๊ฑด๋ช…์ œ) and logical equivalence(๋™์น˜) - conditional proposition : p->q "if p then q", "p only if q" p : ๊ฐ€์ •, ์ถฉ๋ถ„์กฐ๊ฑด / q : ๊ฒฐ๋ก , ํ•„์š”์กฐ๊ฑด - logically equivalent (converse(์—ญ), co..
[์ด์‚ฐ์ˆ˜ํ•™] Chapter 6. Counting methods and the pigeonhole principle 1. Basic Principles - Menu for Quick Lunch : ์ ์‹ฌ ๋ฉ”๋‰ด๋ฅผ ๊ณ ๋ฅด๋Š” ๊ฒฝ์šฐ์˜ ์ˆ˜ 1) Multiplication Principle(๊ณฑ์…ˆ๋ฒ•์น™) : k๊ฐœ์˜ ์—ฐ์†์ ์ธ ํ–‰๋™์ด ์žˆ์„ ๋•Œ, ์ด ํ–‰๋™์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ์˜ ์ˆ˜๋Š” n1n2...nk ex) 8 bit string ์—์„œ 101์ด๋‚˜ 111๋กœ ์‹œ์ž‘ํ•˜๋Š” ๊ฒƒ์˜ ๊ฐœ์ˆ˜ : 2^5 * 2 2) Addition Principle (๋ง์…ˆ๋ฒ•์น™) nj๊ฐœ์˜ elements๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” k๊ฐœ์˜ pairwise disjoint sets๊ฐ€ ์žˆ์„ ๋•Œ, ์ด sets์˜ ๊ฒฐํ•ฉ X = ∪Xj ๋Š” n1 + n2+...+ nk์˜ elements๋ฅผ ๊ฐ€์ง„๋‹ค. 2. Permutations and Combinations (์ˆœ์—ด๊ณผ ์กฐํ•ฉ) 1) Permutation : ์ˆœ์—ด (..
[์ด์‚ฐ์ˆ˜ํ•™] Chapter 5. Introduction to Number Theory 1. Divisors 1) - d๊ฐ€ n์„ ๋‚˜๋ˆ„์–ด ๋–จ์–ด์ง€๊ฒŒ ํ•  ๋•Œ, ์ฆ‰ n=dq๋ฅผ ๋งŒ์กฑํ•˜๋Š” integer q๊ฐ€ ์กด์žฌํ•  ๋•Œ, d divides n์ด๋ผ๊ณ  ๋งํ•œ๋‹ค. - ์ด ๋•Œ q๋ฅผ quotient, d๋ฅผ divisor ๋˜๋Š” n์˜ factor๋ผ๊ณ  ๋ถ€๋ฅธ๋‹ค. - d divides n์ผ ๋•Œ d|n์œผ๋กœ ์“ด๋‹ค. Theorem 5.1.3 m, n, d๋ฅผ ์ •์ˆ˜๋ผ๊ณ  ํ•˜์ž. ๋งŒ์•ฝ d|m์ด๊ณ  d|n์ด๋ฉด d|(m±n)์ด๋‹ค. ๋˜ํ•œ d|m์ด๋ฉด d|mn์ด๋‹ค. proof : d|m์ด๊ณ  d|n์ด๋ฉด m=dq, n=dq' ๋ผ๊ณ  ์“ธ ์ˆ˜ ์žˆ๋‹ค. m+n = dq + dq' = d(q+q')์ด๋‹ค. ๋”ฐ๋ผ์„œ d|(m+n) ์ด๋‹ค. 2) Prime and Composite - Prime : ์†Œ์ˆ˜ - Composite : ํ•ฉ์„ฑ์ˆ˜ composition์€ 2์™€ ๋ฃจ..
[์ด์‚ฐ์ˆ˜ํ•™] Chapter 4. Algorithms 1. Introduction - ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํŠน์ง•๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. 1) input 2) output 3) precision : ์ •ํ™•ํ•˜๊ฒŒ ์„œ์ˆ ๋˜์–ด์•ผ ํ•œ๋‹ค 4) determinism : ์ˆ˜ํ–‰์˜๊ฒฐ๊ณผ๋Š” uniqueํ•˜๋‹ค. ๋˜ํ•œ input๊ณผ ์„ ํ–‰๋œ step์— ๋”ฐ๋ผ ๊ฒฐ์ •๋œ๋‹ค. 5) finiteness : ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋๋‚˜์•ผ ํ•œ๋‹ค. (์œ ํ•œ๊ฐœ์˜ instruction์ด ์ˆ˜ํ–‰๋œ ์ดํ›„์—” ๋ฉˆ์ถฐ์•ผ ํ•จ) 6) correctness : ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ๋„์ถœ๋œ output์€ ๋งž์•„์•ผ ํ•œ๋‹ค. 7) generality : ๋ชจ๋“  input์— ๋Œ€ํ•ด ์ ์šฉ๋˜์–ด์•ผ ํ•œ๋‹ค. 2. Examples of Algorithms - ํฐ ์ˆ˜ ์ฐพ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ๋ฌธ์ž์—ด ์ฐพ๊ธฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ์‚ฝ์ž… ์ •๋ ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ - Randomized Algorithms (๋ฌด์ž‘์œ„ ..
[์ด์‚ฐ์ˆ˜ํ•™] Chapter 3. Relations 1. Relations - ์ฃผ์–ด์ง„ ์ง‘ํ•ฉ X, Y์—์„œ Cartesian product X x Y ๋ฅผ ํ•˜๋ฉด ๊ทธ ๊ฒฐ๊ณผ๋Š” x∈X, y∈Y์ธ (x, y)์˜ ๋ชจ๋“  ordered paris ์ด๋‹ค. X x Y = {(x,y) | x∈X and y∈Y} -Binary relation (์ด์ง„ ๊ด€๊ณ„) : ๋‘ ์ง‘ํ•ฉ์˜ ์›์†Œ ์‚ฌ์ด์˜ ๊ด€๊ณ„ ์ง‘ํ•ฉ X ์—์„œ ์ง‘ํ•ฉ Y ๋กœ์˜ binary relation R์€, Cartesian product X x Y ์˜ subset(๋ถ€๋ถ„์ง‘ํ•ฉ)์ด๋‹ค. Ex) X = { 1, 2, 3 } and Y = { a, b } R = {(1, a), (1, b), (2, b), (3, a)} ๋Š” X์™€ Y ์‚ฌ์ด์˜ relation์ด๋‹ค. - Domain : y∈Y์ธ y์— ๋Œ€ํ•˜์—ฌ (x, y)๊ฐ€ relation R์— ์†ํ•  ๋•Œ..