๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐“ก๐“ธ๐“ธ๐“ถ5: ๐’ฆ๐‘œ๐“‡๐‘’๐’ถ ๐’ฐ๐“ƒ๐’พ๐“‹/Discrete mathematics

[์ด์‚ฐ์ˆ˜ํ•™] Chapter 1. Logic and proofs

1. Propositions : ๋ช…์ œ 

  - ๋งŒ์•ฝ p, q๊ฐ€ ๋ช…์ œ๋ผ๋ฉด, connective๋ฅผ ์ด์šฉํ•ด ์ƒˆ๋กœ์šด compound proposition์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค.

  (conjunction AND, inclusive disjunction OR, exclusive disjunction OR(XOR), negation, implication, double implication)

 

2. Conditional propositions(์กฐ๊ฑด๋ช…์ œ) and logical equivalence(๋™์น˜)

 - conditional proposition : p->q "if p then q", "p only if q"

   p : ๊ฐ€์ •, ์ถฉ๋ถ„์กฐ๊ฑด / q : ๊ฒฐ๋ก , ํ•„์š”์กฐ๊ฑด

 

 - logically equivalent (converse(์—ญ), contrapositive(๋Œ€์šฐ), double implication(p<->q), tautology(ํ•ญ์ง„๋ช…์ œ, ํ•ญ์ƒ ์ฐธ์ธ ๋ช…์ œ), contradict(๋ชจ์ˆœ ๋ช…์ œ, ํ•ญ์ƒ ๊ฑฐ์ง“์ž„))

 - De Morgan's law : ๋“œ๋ชจ๋ฅด๊ฐ„์˜ ๋ฒ•์น™

 

3. Quantifiers : ํ•œ์ •๊ธฐํ˜ธ

 - propositional function P(x)๋Š” ๋ณ€์ˆ˜ x๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” ๋ช…์ œ์ž„

 - Domain : x๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š” ๋ฒ”์œ„, ์ •์˜์—ญ

 

 1) universal quantifier : ๋ชจ๋“ ~

 2) existential quantifier : ์–ด๋–ค~

 3) de morgan's law์˜ ์ผ๋ฐ˜ํ™” : ๋ชจ๋“ ~ ์˜ ๋ถ€์ •์€ ์–ด๋–ค, ์–ด๋–ค~์˜ ๋ถ€์ •์€ ๋ชจ๋“ 

 

4. Nested Quantifier : ์—ฌ๋Ÿฌ๊ฐœ์˜ quantifier์˜ ๊ณฑ

  ex) ๋ชจ๋“  x์— ๋Œ€ํ•ด ์–ด๋–ค y๊ฐ€ ์ฐธ์ด๋‹ค. 

 

 

5. Proofs

  1) Undefined terms : ๋ฌด์ •์˜ ์ˆ ์–ด, ๊ตฌ์ฒด์ ์ธ ์ •์˜๋ฅผ ๋‚ด๋ฆฌ์ง€ ์•Š๊ณ  ๊ทธ ์„ฑ์งˆ์„ ๊ณต๋ฆฌ๋กœ ๊ทœ์ •ํ•˜๋Š” ์ˆ˜ํ•™์  ๊ฐœ๋…

     definition : ์ •์˜

     axiom : ๊ณต๋ฆฌ, ์ฆ๋ช…์—†์ด true๋กœ ์ธ์ •๋˜๋Š” ๋ช…์ œ

     theorem : ์ •๋ฆฌ, ๋…ผ๋ฆฌ์  ๋‹จ๊ณ„์— ์˜ํ•ด ์ฐธ์ž„์ด ์ฆ๋ช…๋˜๋Š” ๋ช…์ œ

 

  2) proofs 

   - direct proof : p->q๋ฅผ ์ง์ ‘ ์ฆ๋ช…

   - indirect proof 

     โ“ contradiction ์ฆ๋ช… (๊ท€๋ฅ˜๋ฒ•) : p->q๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด p->q๊ฐ€ ๊ฑฐ์ง“์ด๋ผ๊ณ  ๊ฐ€์ •ํ•˜๋ฉด ๋ง์ด ์•ˆ๋จ์„ ๋ฐํž˜

     โ“‘ contrapositive ์ฆ๋ช… (๋Œ€์šฐ ๋ช…์ œ ์ฆ๋ช…)

     โ“’ ๊ทธ ๋ฐ–์— :

        proof by cases(exhaustive proof) : p1 v p2 v ... v pn -> p๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด p1->q, p2->q...pn->q๋ฅผ ์ฆ๋ช…

        proof of equivalence : p<->q ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด p=>q. q=>p ๊ฐ๊ฐ์„ ์ฆ๋ช…

        existence proof : ∃x P(x) ๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทธ๋ƒฅ ์ €๊ฑฐ ํ•˜๋‚˜ ๋งŒ์กฑํ•˜๋Š” x ์ฐพ์œผ๋ฉด ๋จ

 

  3) Valid arguments 

   - Deductive reasoning : propositions์˜ sequence๋กœ๋ถ€ํ„ฐ q๋ผ๋Š” ๊ฒฐ๋ก ์— ๋„๋‹ฌํ•˜๊ธฐ ๊นŒ์ง€์˜ ๊ณผ์ • 

   -