๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐“ก๐“ธ๐“ธ๐“ถ5: ๐’ฆ๐‘œ๐“‡๐‘’๐’ถ ๐’ฐ๐“ƒ๐’พ๐“‹/๋…ผ๋ฆฌ์„ค๊ณ„ Digital Design(COSE221)

[๋…ผ๋ฆฌ์„ค๊ณ„] 2. ๋ถ€์šธ๋Œ€์ˆ˜์™€ ๋…ผ๋ฆฌ๊ฒŒ์ดํŠธ

1. ๋ถ€์šธ ์Šค์œ„์นญ ๋Œ€์ˆ˜

  - ๋ถ€์šธ ๋Œ€์ˆ˜ : ๋…ผ๋ฆฌ ์—ฐ์‚ฐ์ž and, or, not์„ ์‚ฌ์šฉํ•˜์—ฌ ๋…ผ๋ฆฌ์  ๊ธฐ๋Šฅ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ๋…ผ๋ฆฌ ์ˆ˜ํ•™

  - ๋ถ€์šธ์‹ : ๋…ผ๋ฆฌ์  ๊ธฐ๋Šฅ์„ ๊ธฐํ˜ธ๋กœ ๋‚˜ํƒ€๋‚ธ ์‹

  - ๋…ผ๋ฆฌ๋ณ€์ˆ˜ : ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ•˜๋Š” ๋…ผ๋ฆฌ์น˜๋ฅผ ๊ฐ–๋Š” ์–‘

  - ๋…ผ๋ฆฌ์—ฐ์‚ฐ์ž : ๋…ผ๋ฆฌ ์‹œ์Šคํ…œ์„ ํ•ด์„ํ•˜๊ณ  ์„ค๊ณ„ํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ๋ณธ์ ์ธ ๊ธฐ๋Šฅ

  - ๋…ผ๋ฆฌํ•จ์ˆ˜ : ์ž„์˜์˜ ์‹œ์Šคํ…œ์ด ๊ฐ–๊ณ ์žˆ๋Š” ๋…ผ๋ฆฌ์ ์ธ ๊ธฐ๋Šฅ 

  - ์ง„๋ฆฌํ‘œ : ๋ชจ๋“  ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์˜ ๋…ผ๋ฆฌ์ ์ธ ์ž…๋ ฅ๊ณผ ์ถœ๋ ฅ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ธ ํ‘œ

 

 

2. ๋ถ€์šธ ํ•จ์ˆ˜

  - Closure : + /· (and / or)

  - ๋‹จ์œ„์› (identity element) : ์›๋ž˜ ๊ผด์ด ๋‚˜์˜ค๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฐ’ (or์ผ ๋•Œ๋Š” 0, and ์ผ ๋•Œ๋Š” 1) 

    ex) x+0 = 0+x = x

         x · 1 = 1 · x = x

  - ๊ตํ™˜๋ฒ•์น™, ๋ถ„๋ฐฐ๋ฒ•์น™

  - ๋ณด์ˆ˜

     ex) x + x' = 1

          x · x' = 0

 

 

ex) F1 = x + y'z ,

     F2 = x'y'z + x'yz + xy' = x'z(y'+y) + xy' = x'z + xy' 

 

 

์ง„๋ฆฌํ‘œ์ด๋‹ค

 

 

 * ๋ถ€์šธ ํ•จ์ˆ˜๋ฅผ ๋ฆฌํ„ฐ๋Ÿด์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ตœ์†Œ๊ฐ€ ๋˜๋„๋ก ๊ฐ„๋žตํ™”ํ•˜๊ธฐ!

 * ์Œ๋Œ€์˜ ๋ฒ•์น™ : and๋ฅผ or๋กœ, or์„ and๋กœ ์‹น ๋‹ค ๋ฐ”๊พธ๋ฉด ๊ฐ’์ด ๊ฐ™๋‹ค. 

 * ํ•จ์ˆ˜์˜ ๋ณด์ˆ˜ : ๋“œ๋ชจ๋ฅด๊ฐ„ ๋ฒ•์น™๊ณผ ๊ต‰์žฅํžˆ ์œ ์‚ฌ... (A+B+C)' = A'B'C' -> ์Œ๋Œ€ ๊ตฌํ•ด์„œ ๊ฐ ๋ฆฌํ„ฐ๋Ÿด์„ ๋ณด์ˆ˜ํ™”ํ•˜๋ฉด ๋จ

 

 

 

3. Canonical and Standard Forms

  1) Canonical Forms

 - Minterm : ์ด์ง„ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ AND์˜ ํ•ญ(ํ‘œ์ค€ ๊ณฑ) -> n๊ฐœ์˜ ๋ณ€์ˆ˜์— ๋Œ€ํ•ด์„œ 2^n๊ฐœ ์žˆ์Œ

 - Maxterm : ์ด์ง„ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ OR์˜ ํ•ญ(ํ‘œ์ค€ ํ•ฉ) -> ์–˜๋„ 2^n๊ฐœ ์žˆ์Œ

 

Minterms์—์„œ๋Š” and ์—ฐ์‚ฐํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ฌด์กฐ๊ฑด 1์ด ๋‚˜์˜ค๋„๋ก ๋ณ€์ˆ˜๋ฅผ ์ง€์ •ํ•ด์ฃผ๊ณ , Maxterms์—์„œ๋Š” or ์—ฐ์‚ฐํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋ฌด์กฐ๊ฑด 0์ด ๋˜๋„๋ก ์ง€์ •ํ•ด์ค€๋‹ค๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋จ. 

 

 

minterm์€ ํ•จ์ˆซ๊ฐ’์ด 1์ด ๋˜๋Š” ๊ฑธ ๊ธฐ์ค€์œผ๋กœ, maxterm์€ 0์ด ๋˜๋Š” ๊ฒƒ์„ ๊ธฐ์ค€์œผ๋กœ ํ•จ.

 

  - Sum of Minterm 

 ex)  ๋ถ€์šธํ•จ์ˆ˜ F=A+B'C๋ฅผ minterm์˜ ํ•ฉ์œผ๋กœ ํ‘œ์‹œ

 A = A(B+B') = AB+ AB' = AB(C+C') + AB'(C+C') = ABC+ABC'+AB'C+AB'C'

B'C = (A+A')(B'C) = AB'C+A'B'C

๋”ฐ๋ผ์„œ ABC+ABC'+AB'C+AB'C'+AB'C+A'B'C = A'B'C+AB'C'+AB'C+ABC'+ABC = m1 + m4+ m5 + m6 + m7 = ∑(1,4,5,6,7)

 

  - Product of Maxterm

 ex) ๋ถ€์šธํ•จ์ˆ˜ F= xy+x'z๋ฅผ maxterm์˜ ๊ณฑ์œผ๋กœ ํ‘œ์‹œ

F = xy+x'z = (xy+x')(xy+z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z)

x'+y=x'+y+zz' = (x'+y+z)(x'+y+z')

x+z=x+yy'+z=(x+y+z)(x+y'+z)

y+z=xx'+y+z=(x+y+z)(x'+y+z)

์ดํ•˜ ์ƒ๋žต

 

  - Conversion between Canonical Forms

  F(A,B,C) = ∑(1,4,5,6,7)

  F'(A,B,C) = ∑(0,2,3)

  F = (m0 + m2 + m3)' = m0'm2'm3' = M0M2M3

์ฆ‰, mj ' = Mj

 

 

 2) Standard Forms ; ๋ฆฌํ„ฐ๋Ÿด์„ ์ตœ์†Œํ™”ํ•˜์ž!

  - Sum of product (SOP) : F1 = y' + xy + x'yz'

  - Product of sum (POS) : F2 = x(y'+z)(x'+y+z'+w)

 

 

4. 2์ง„ ๋…ผ๋ฆฌํ•จ์ˆ˜ 

 -AND ๊ฒŒ์ดํŠธ

 -OR ๊ฒŒ์ดํŠธ

 -NOT ๊ฒŒ์ดํŠธ

 - NAND ํ•จ์ˆ˜ : s = (xy)' = x' + y'

๋‘˜๋‹ค 1์ผ ๋•Œ 0
NAND ๊ฒŒ์ดํŠธ์˜ ๋…ผ๋ฆฌ๊ธฐํ˜ธ์ž„

 - NOR ํ•จ์ˆ˜ : s = (x+y)' = x'y'

ํ•˜๋‚˜๋ผ๋„ 1์ด ์žˆ์œผ๋ฉด 0, ๋‘˜๋‹ค 0์ด๋ฉด 1

 

NOR์˜ ๋…ผ๋ฆฌ๊ธฐํ˜ธ

 

 - EX-OR ํ•จ์ˆ˜ (XOR) : ๊ฐ™์œผ๋ฉด 0 ๋‹ค๋ฅด๋ฉด 1!

 - EX-NOR : ๊ฐ™์œผ๋ฉด 1, ๋‹ค๋ฅด๋ฉด 0

์ด๊ฑด ๊ทธ๋ƒฅ ๊ทธ๋ ‡๊ตฌ๋‚˜ ํ•˜์…ˆ

 

(1) ((xy)')' + ((xy)')' = x'+y')' + (x'+y')' = xy + xy = xy

(2) (x')' + (y')' = x + y